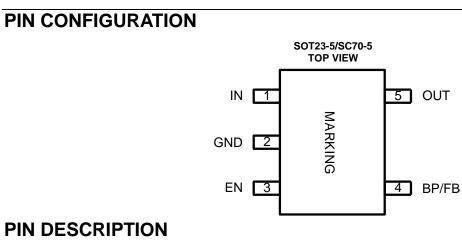
ABSOLUTE MAXIMUM RATINGS

IN to GND0	.3V to	6V
EN to GNDC	.3V to	V_{IN}
OUT, BP/FB to GND0.3V to (V _{IN} +0.	3V)
Output Short-Circuit Duration	Infii	nite
Power Dissipation, $P_D@T_A=25$		
SOT-23-5	0.	4W
SC70-5	0.:	3W
Package Thermal Resistance		
SOT-23-5, _{JA}	260	/W
SC70-5, _{JA}	330	/W
Junction Temperature	15	0
Operating Temperature Range40	to +8	5
Storage Temperature Range65	to 15	0
Lead Temperature (Soldering, 10 sec)	26	60
ESD Susceptibility		
НВМ	2000	V
MM	200	V


NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Broadchip recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

PIN DESCRIPTION

PIN	NAME	FUNCTION
		Regulator Input. Supply voltage can range from 2.5V to 5.5V. Bypass with a 1uF
1	IN	capacitor to GND.
2	GND	Ground.
3 EN		Shutdown Input. A logic low reduces the supply current to 10nA. Connect to IN
		for normal operation.
	BP	Reference-Noise Bypass (fixed voltage version only). Bypass with a low-leakage
4	DP	0.01uF ceramic capacitor for reduced noise at the output.
4	FB	Adjustable Voltage Version Only. This is used to set the output voltage of the
		device.
5	OUT	Regulator Output.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT(NOMINAL)} + 0.5V^{(1)}, Full = -40$ to +85 , unless otherwise specified.)

PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Voltage	V _{IN}		2.5		5.5	V	
Output Voltage Accuracy ⁽¹⁾		I _{OUT} =0.1mA	-2.5		2.5	%	
		SOT-23-5		300			
Maximum Output Current		V _{OUT} =1.2V,1.5V,1.8V, SC70-5		150		mA	
		V _{OUT} >2V, SC70-5		250			
Current Limit	I _{LIM}			800		mA	
Ground Pin Current	Ι _Q	No load, EN=2V		100	200	uA	
Dropout Voltage ⁽²⁾		I _{OUT} =1mA		0.9			
Dropout Voltage		I _{OUT} =300mA		270	400	400 mV	
Line Regulation	V _{LNR}	V _{IN} =2.5V or (V _{OUT} +0.5V) to 5.5V, I _{OUT} =1mA		0.02	0.05	%/V	
		I _{OUT} =0.1mA to 300mA, C _{OUT} =1uF, V _{OUT} >2V		0.002	0.005		
Load Regulation	V _{LDR}	$I_{OUT}=0.1$ mA to 300mA, $C_{OUT}=1$ uF, V_{OUT} 2V		0.004	0.008	- %/mA	
Output Voltage Noise	en	f=10Hz to 100kHz, C _{BP} =0.01uF, C _{OUT} =10uF		30		uV _{RMS}	
Power Supply Rejection Ratio	PSRR	С _{вР} =0.1uF, f= I _{LOAD} =50mA, C _{OUT} =1uF, <mark>217Hz</mark>		77		dB	
		V _{IN} =V _{OUT} +1V f=1kHz		74			
SHUTDWON ⁽³⁾				T		T	
EN Input Threshold		V _{IN} =2.5V to 5.5V,	1.5			v	
-		V _{EN} =-0.3V to V _{IN}	0.3				
EN Input Bias Current		EN=0V or EN=5.5V		0.01	1	uA	
Shutdown Supply Current	I _{Q(SHDN)}	EN=0.4V		0.01		uA	
Shutdown Exit Delay ⁽⁴⁾		C _{BP} =0.01uF, C _{OUT} =1uF, No Load		30		us	
THERMAL PROTECTION							
Thermal Shutdown Temperature	T _{SHDN}			150		°C	
Thermal Shutdown Hysteresis	T _{SHD}	N		15		°C	

NOTES:

1. $V_{IN} = V_{OUT (NOMINAL)} + 0.5V$ or 2.5V, whichever is greater.

2. The dropout voltage is defined as VIN - VOUT, when VOUT is 100mV below the value of V_{OUT} for $V_{IN} = V_{OUT} + 0.5V$.

(Only applicable for V_{OUT} = +2.5V to +5.0V.)

3. V_{EN} = -0.3V to V_{IN}

4. Time needed for $V_{\mbox{\scriptsize OUT}}$ to reach 90% of final value.

www.broadchip.com

TYPICAL APPLICATION CIRCUIT

Standard 1% Resistor Values for Common Output Voltages of Adjustable Voltage Version			
VOUT (V)	R1 (k)	R2 (k)	
1.2	0		

Programming the BCT2019 Adjustable LDO regulator

The output voltage of the BCT2019 adjustable regulator is programmed using an external resistor divider as show in Figure as below. The output voltage is calculated using equation as below:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right)$$

Where:

V_{REF}=1.207V typ (the internal reference voltage)

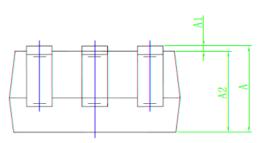
Resistors R1 and R2 should be chosen for approximately 50uA divider current. Lower value resistors can

 $P_D(MAX) = (125^{\circ}C - 25^{\circ}C)/250 = 400 \text{mW} (SOT-23-5)$

The maximum power dissipation depends on operating ambient temperature for fixed T_J(MAX) and thermal resistance $_{JA}$. It is also useful to calculate the junction of temperature of the BCT2019 under a set of specific conditions. In this example let the Input voltage V_{IN}=3.3V, the output current Io=300mA and the case temperature T_A=40°C measured by a thermal couple during operation. The power dissipation for the Vo=2.8V version of the BCT2019 can be calculated as:

P_D = (3.3V–2.8V) ×300mA+3.6V×100uA =150mW

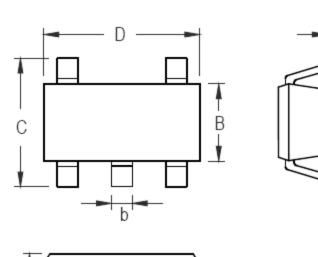
And the junction temperature, T_J, can be calculated as follows:

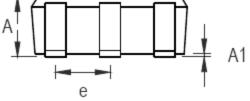

 $T_J=T_A+P_Dx_{JA}=40^{\circ}C+0.15W\times 250^{\circ}C/W$ =40^{\circ}C+37.5^{\circ}C=77.5^{\circ}C<T_J(MAX) =125^{\circ}C

For this operating condition, T_J is lower than the absolute maximum operating junction temperature,125°C, so it is safe to use the BCT2019 in this configuration.

PACKAGE OUTLINE DIMENSIONS

Packaging Mechanical: SC70 (C)




Symbol Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
		.	24 D () () (
	<u> </u>			
				1 - 276
star D'P		項換「召		<u> </u>
	EZ 857	919 91		

www.broadchip.com

Packaging Mechanical: SOT23-5

Н

Symbol	Dimensions In Millimeters		
Symbol	Min	Max	
А	1.05	1.15	
A1	0.03	0.15	
В	1.5	1.7	
b	0.28	0.45	
С	2.75	3.05	
D	2.82	3.02	
е	0.95(BSC)		
Н	0.12	0.23	
L	0.35	0.55	

SOT-23-5 Surface Mount Package